skip to main content


Search for: All records

Creators/Authors contains: "Wimp, Gina M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The eruption of Mount St. Helens in 1980 resulted in a cataclysmic restructuring of its surrounding landscapes. The Pumice Plain is one of these landscapes, where tree species such as Sitka willow (Salix sitchensis) and their dependent communities have been established along newly-formed streams. Thus, the study of these dependent communities provides a unique and rare opportunity to investigate factors influencing metacommunity assembly during true primary succession. We analyzed the influence of landscape connectivity on metacommunity assembly through a novel application of circuit theory, alongside the effects of other factors such as stream locations, willow leaf chemistry, and leaf area. We found that landscape connectivity structures community composition on willows across the Pumice Plain, where the least connected willows favored active flyers such as the western tent caterpillar (Malacosoma fragilis) or the Pacific willow leaf beetle (Pyrrhalta decora carbo). We also found that multiple levels of spatial habitat structure linked via landscape connectivity can predict the presence of organisms lacking high rates of dispersal, such as the invasive stem-boring poplar weevil (Cryptorhynchus lapathi). This is critical for management as we show that the maintenance of a heterogeneous mixture of landscape connectivity and resource locations can facilitate metacommunity dynamics to promote ecosystem function and mitigate the influences of invasive species. 
    more » « less
  2. null (Ed.)
    Standardized protocols are an essential asset for research requiring the maintenance of live organisms. Ecological studies often involve collaborations between multiple teams that are spread across locations, and these collaborations benefit from sharing successful laboratory procedures. Our research team is studying the ecology of the fall webworm moth (Hyphantria cunea, hereafter FW) in North America for >10 years, during which time we have established reliable procedures for starting and maintaining FW colonies under laboratory conditions. FW is a North American species that has been introduced to Europe and Asia where it is a major pest. Here, we present a detailed review of the methods we use to find and collect FW caterpillars in the field, house and rear caterpillars in the laboratory, handle pupae, and initiate diapause for overwintering. We also describe how to end diapause the following summer, care for emerging adult moths and mate them, and tend to eggs. Lastly, we test the effectiveness of some of our protocols related to mating adult moths to determine whether fertile eggs are produced. FW is becoming a model study system for ecological and evolutionary studies related to diet breadth. As more researchers begin studying the ecology and management of FW, laboratory colonies will play an important role for these projects. Our protocols will provide guidance to inform the successful study of this important insect. 
    more » « less